Life‑LCA: case study of the life cycle impacts of an infant

Volumen:  28   |  Pages:  13   |  Year of Publication:  2021  | License:  CC BY 4.0

What is the objective?

The study was conducted to close the primary data gap when assessing the environmental impact of an infant including the prenatal (conception until birth) and infancy phase (0–3 years), by applying the Life-LCA approach. The results of this study complement the "childhood and youth stage" assessed in the article entitled "Life-LCA: the first case study of the life cycle impacts of a human being."

Our Short Summary.

Life-LCA has advanced as a method of assessing and analyzing the impacts of human product and service consumption behaviour from the prenatal phase through age 49. According to the studies, more than 50% of emissions are attributed to transportation and food across all the impact categories, including climate change, acidification, eutrophication, and photochemical ozone formation. There is a high contribution from clothing consumption during the prenatal and infant phases, while energy and water have a major impact in adulthood phases.

Why you should read it!

The paper provides information for decision-makers to devise strategies for more sustainable consumption patterns at an early stage. It also helps researchers to reduce the uncertainties that remain in the results, mainly due to a lack of primary data.

Original Abstract

The recently published first Life-LCA case study of a human being (0–49 years) did not use primary data for the “childhood and youth stage” (0–17 years). Consumption was assumed to contribute 50% of the calculated 48th baseline year. This led to uncertainties as consumer behavior changes from birth to adulthood. Furthermore, transport emissions and environmental impacts before birth were neglected. Therefore, this paper analyzes the prenatal and infancy phase (0–3 years) to develop the Life-LCA method and database further and evaluate generic assumptions. The Life-LCA method sets the reporting unit to newly defined prenatal and infancy phases. The reporting flow describes the range of all consumed products attributable to an infant. Primary data was collected with a sample of three study objects—a pregnant mother, a newborn baby, and a 3-year-old infant—living in Germany. The following environmental impact assessment categories are considered: climate change (GWP), acidification (AP), eutrophication (EP), and photochemical ozone creation (POCP). Prenatal and infancy phase burdens account for a GWP of 4,011 kg CO2-eq., an AP of 22.3 kg SO 2-eq., an EP of 10.7 kg PO4-eq., and a POCP of 1.7 kg C2H4-eq. The share of the prenatal phase is around 15–20% for all impact categories. Transport is a hotspot for GWP (30–60%) and POCP (45–70%) in both phases. AP (50%) and EP (45–50%) are dominated by food products, mainly meat (45%) and dairy products (35%). For the prenatal phase, energy and water consumption at birth rank third in GWP (8%). Diapers account for 6% (GWP) of the environmental burden in the infancy phase. Assumptions made in the first Life-LCA study connect closely with the values calculated for the first three years of infancy. A remaining challenge is allocating the impacts between infants and parents and developing a methodology for assessing data quality. Focusing on two new life phases has led to the subdivision of the “childhood and youth stage” and an extension of the system boundaries. The results’ uncertainty was reduced by developing a new set of specific datasets focusing on several study objects. The case study results show the importance of primary data collection for evaluating generic assumptions. Additional studies on childhood and adolescence from 3 to 17 years are suggested for a robust assessment of the complete “childhood and youth stage.


Leave a reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

©2024 Forum for Sustainability through Life Cycle Innovation e.V. | Contact Us | Legal Info


If you would like to get in touch with us, please feel free to send us a message. Thank you very much in advance.

Subscribe To Our Newsletter
Join our newsletter and stay up-to-date on everything happening in the life cycle community! We'll send you 3-4 newsletters per year
Subscribe Now!

Log in with your credentials


Forgot your details?

Create Account